Recent Light Extraction Development in OLED

Franky So
Department of Materials Science and
Engineering
University of Florida

Outcoupling Efficiency (χ_{out})

- Internal quantum efficiency (η_{int}) : ~ 100%
- External quantum efficiency (η_{ext}) : ~25%

 $\eta_{
m ext} = \chi_{
m out} \eta_{
m int}$

 $\chi_{\rm out}$: ~25%

- ITO/organic waveguide mode : ~50%
- Substrate mode: ~25%
- Air(outcoupled) mode : ~25%

Outcoupling for substrate mode

Outcoupling techniques

Microlens array

Möller, J. Appl. Phys. 91 (2002)

Substrate roughening

Chen, Opt. Express 18, 37 (2010)

1.5~1.8 times enhancement with convenient and low cost fabrication

Out-coupling for thin film guided mode

Other concepts of outcoupling techniques

- Horizontally oriented emitter
 - Isotropic dipoles

Horizontally-oriented dipoles

D. Yokoyama et al, Adv. Funct. Mater. 24 (2012)

→ More horizontally-oriented materials

Kim et al, Adv. Funct. Mater. 23 (2013)

- → Horizontally oriented emitters by non-isotropic matrix of B3PYMPM in emitting layer
- **⇒** Exceeding EQE of 30%

Outcoulping for wave-guided mode: Corrugated OLEDs

Schematic dispersion curve in OLED

Diffraction grating equation

$$k_{//} = k_o \sin \theta = k_{wg} \pm mk_G$$
$$k_G = 2\pi / \lambda_G$$

k_o: wavevector in free space

k_{II}: wavevector of in-plane

component of k_o

 $\boldsymbol{\theta}$: angle of emitted light with respect

to the surface normal

k_G: wavevector of grating

M: integer

 λ_{q} : period of grating

- Key to control grating vector/periodidicity of the grating structure
- 0.3~ 1 um periodicity with 40~100 nm of depth

Outcoupling for wave-guided mode

Internal scattering layer

- C. Chang et al, Org. Electron.13, 1073 (2012)

- Scattering layer: : transparent photoresist (n=1.52) + TiO₂ particles
 - ⇒refractive index : n=1.5~1.9
 - ⇒still high transparent ~85%
 - →2 times enhancement in EQE

Outcoupling for wave-guided mode

Scattering ITO layer - A. Kumar et al, Opt. Lett. 37 (2012)

Scattering porous nanostructured ITO

- ➡ Glancing angle deposition method by RF sputter
 - 1. Scattering media formed by porous/n-ITO particles
 - 2. Index varies from 1.2-1.9 depending on the deposition angle
 - 3. 80% enhancement in light output

Other similar works – different fabrication methods

• S. Shin et al, Org. electron. 14 (2013)

• W. Koo et al, Adv. Funct. Mater. 22 (2012)

• J. Kim, Opt. Express. 5 (2013)

Optical modes – device structure dependence

Appl. Phys. Lett. 97, 253305 (2010)

Other concepts of outcoupling techniques

- Metal-free both side transparent electrodes
- Kim et al, Adv. Mater. 25, 3571 (2013)

Structure & SEM of electrodes

Metal-free OLED with a high index

- A high index light extraction layer deposited on the top electrode with a bottom microlens array
- ❖ An EQE of 55% was achieved @ 1000 nits

Outcoupling for wave-guided mode: Corrugated OLEDs

OLED on buckle structure

- W. Koo, Nature photonics 21 (2010)
- Grating structures with broad distribution of periodicity
 - 1. All wavelength extraction met by Bragg diffraction law
 - Still close-Lambertian distribution
 - 3. 2.2 times enhancement in current efficiency

Corrugated structure fabrication

High efficiency Irppy₃ devices w/ grating

- Grating: 74 cd/A and Ref: 48 cd/A at 2000 cd/m2
 - > 55% enhancement in current efficiency
 - ✓ At low luminance, current efficiency is more than 2X enhanced.

Latest OLED lighting product development

 Commercial 80 lm/W OLED with outcoupling for waveguide mode in 2013

http://www.lgchem.com/global/green-energy/oled-lighting

Figure: Panasonic - High efficiency white OLED

- 114 lm/W OLED in 2013
- Built-up Light Extraction Substrate (BLES)50% EQE

http://www.osadirect.com/news/article/970/

Going forward....

- EQE approaching 70% is possible
- Low-cost manufacturing light extraction schemes are needed for SSL

Thank you for your attention

